As per the figure above mentation the situation of wind movement In a cyclone system, the low pressure is at the center which is known as the eye of the cyclone which results the pressure gradient being straight inward but in the case of an anticyclone wind system, the high pressure located is at the center, resulted the gradient is straight outward. Due to the rightward movement caused by Coriolis force and friction with the surface, the movement of the surface air deflects at an angle across the gradient, creating a counter-clockwise inspiraling motion and a clockwise out spiraling motion.
The above describe figure reflects the movement of wind in cyclone and anticyclone systems in the southern hemisphere of the earth. The condition of wind movement in the southern hemisphere for the cyclone is spiral will be clockwise due to the Coriolis effect deflect to the left. For anticyclones, the movement of the wind system is the opposite.
A General overview on Coriolis effect Earth rotates from west to east, it will create a effect which is well known as the effect or force of Coriolis, cause to deflect winds and ocean currents to the right direction in the northern hemisphere and to left in the southern hemisphere. Tt was first introduced by the French scientist Gaspard-Gustave de Coriolis in 1835. The above figure represents the concept of the Coriolis effect on the natural moveable things on the earth. The Blue arrows reflect the direction of starting motion, and the red arrows show the direction of motion apparent to the Earth observer. The Coriolis effect is strongest near the poles and decreases to zero at the Equator. |
Mid-latitude cyclones, sometimes called extratropical cyclones, form at the polar front when the temperature difference between the two air masses is very large. It is mainly dominated in the middle and high latitudes. These air masses move in different directions from each other. The Coriolis effect (Northern Hemisphere) causes the circulation of the winds to turn to the right so that the circulation of the winds hits the polar front at an angle. Hot and cold fronts form next to each other.
Most mid-latitude winter storms, including much of the United States and Europe, are caused by mid-latitude cyclones. Warm air at the cold front rises and forms a low-pressure cell. The winds move to lower pressure and create an upward column of air. The wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. Since the rising air is humid, rain or snow.
Mid-latitude cyclones form in the mid-latitudes in winter and move eastward with westerly winds over Earth. These two- to five-day heavy storms can reach 1,000 to 2,500 km (625 to 1,600 mi), become smaller and larger in diameter, and produce winds of up to 125 km (75 mi) per hour. Like tropical cyclones, they can cause widespread beach erosion and flash floods.
Mid-latitude cyclones are particularly severe in the Mid-Atlantic and New England states where they are called noreasters because they come from the northeast. About 30 Nor’easters attack the region every year.
Tropical cyclones are one of the most destructive weather events and are also known as typhoons or hurricanes. Let us study in detail the tropical cyclone, how it is formed, and what are its effects through this article. Tropical cyclones are intense circular storms that occur in warm tropical oceans with speeds exceeding 119 kilometers per hour and are accompanied by heavy rainfall. Primarily, the greatest loss of life and property is not caused by wind, but by other secondary events including storm surges, floods, landslides, and tornadoes.
According to the origin, tropical cyclones are known by different names in the world. In the Atlantic Ocean and the eastern North Pacific Ocean, it is known as Hurricane. Hurricanes occur in tropical latitudes (between 10° and 25°N) in summer and autumn when sea surface temperatures are 28 °C (82 °F) or higher. Warm seas form a large humid air mass. Warm air rises and forms a low-pressure cell, known as a tropical depression. Thunderstorms form around a tropical depression. If the temperature reaches or exceeds 28 °C (82 °F), the air begins to revolve around the low pressure (counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere).
As the air rises, water vapor condenses, releasing latent heat energy. With mild wind shear, a storm turns into a hurricane within two to three days. Hurricanes are huge with strong winds. The exception is a relatively calm storm center when the wind rises. Precipitation can reach 2.5 cm (1 inch) per hour, resulting in the release of about 20 billion metric tons of water per day during a storm. The release of latent heat generates an enormous amount of energy, roughly equal to the total annual electricity consumption in the United States during a hurricane. Hurricanes can also trigger tornadoes.
They are all tropical cyclones. Tropical cyclones are great masses of warm, humid, rotating air. They occur in all tropical oceans except the equatorial South Atlantic. Large tropical cyclones are called hurricanes (Hurricanes = the god of the wind of the Caribbean Taino people) in the North Atlantic and the eastern Pacific, Typhoons (Tai- Fung = Chinese god for great wind) in the western Pacific, tropical cyclones in the Indian Ocean and the Willi- Willis in the waters near Australia.
Hurricanes are huge with strong winds. The exception is a relatively calm storm center when the wind rises. Precipitation can reach 2.5 cm (1 inch) per hour, resulting in about 20 billion metric tons of water per day in the storm. The release of latent heat generates an enormous amount of energy, roughly equal to the total annual electricity consumption in the United States during a hurricane.
Hurricanes can also trigger tornadoes. Storms are strange creatures because they are deadly monsters, but they have a soft but cold heart. The anatomy of a hurricane is quite simple, although the processes involved are quite complex. When a low-pressure disturbance forms, warm humid air moves to low pressure, rising upward and forming a violent thunderstorm. The low-pressure disturbance is surrounded by a wall of clouds called the wall of eyes. The inside of the eyeball has the highest wind speed, the highest cloudiness, the lowest atmospheric pressure, and the most intense precipitation.
The center or heart of the storm is called the eye. In the center of the storm, there is a light breeze, minimal rainfall, and sometimes clear skies over the sky. It is a calm tropical storm area, but that is why it is so dangerous. Many people go outside when their eyes look up because they believe the storm is over. But some do not understand that the “second round” is coming from behind. Away from the eyewall, strong thunderstorms form a storm, called a spiral rain band, which wraps around the eyewall of the storm. First, these lines of rain Hurricanes are classified according to wind speed. The categories are listed on the Saffir–Simpson scale.
Category | MPH | Estimated Damage |
1 (Weak) | 74–95 | Above normal; no read damage to structures |
2 (Moderate) | 96–110 | Some property damage; considerable damage to vegetation |
3 (Strong) | 111–130 | Some buildings were damaged; mobile homes destroyed |
4 (Very strong) | 131–156 | Complete roof failure on small residences; major beach erosion of beach areas |
5(Devastating) | Over 156 | Complete roof and some building failure on most residential and industrial buildings |
Willy-Willy is a tropical cyclone in northwestern Australia. This is a storm that begins to spin to form a tornado. Willies are formed by local winds. There may be a storm or gust of wind that helps them. The rising air column is caused by local hotspots, which may be like roads.
Cyclones are caused by atmospheric disturbances around low-pressure areas characterized by rapid and often destructive air circulation. Cyclones are usually accompanied by severe storms and bad weather. Air circulates in a counterclockwise direction in the Northern Hemisphere and clockwise in the Southern Hemisphere. Cyclones are classified as
(i) extratropical cyclones (also called moderate cyclones).
(ii) tropical cyclones. The word Cyclone comes from the Greek word Cyclos which means snake scroll. It was created by Henry Paddington because tropical storms in the Bay of Bengal and the Arabian Sea look like coiled sea snakes.
Cyclones are classified as extratropical cyclones (also called moderate cyclones); and tropical cyclones. The World Meteorological Organization (WMO, 1976) uses the term ‘Tropical Cyclone’ to cover weather systems where winds exceed the ‘Gale Force’ (minimum 34 knots or 63 kph). Tropical cyclones are derivatives of the oceans and atmosphere, which are powered by heat from the ocean; and driven by temperate east and west trade, high planetary winds, and their ferocious energy. In India, cyclones are classified by:
The following criteria have been prepared by the Indian Meteorological Department (IMD), which classifies low-pressure systems in the Bay of Bengal and Arabian Sea based on potential damage adopted by WMO.
Type of Disturbances | Wind Speed in Km/h | K |
Low Pressure | Less than 31 | Less than 17 |
Depression | 31-49 | 17-27 |
Deep Depression | 49-61 | 27-33 |
Cyclonic Storm | 61-88 | 33-47 |
Severe Cyclonic Storm | 88-117 | 47-63 |
Super Cyclone | More than 221 | More than 120 |
As discussed above the effects of a tropical cyclone and the expected damage depend not only on wind speed but also on other factors including speed, duration of strong wind and precipitation during and after rainfall, direction, and intensity of movement. Sudden changes in structure, like the size and intensity of tropical cyclones, and also affect human response to tropical cyclone disasters. Tropical cyclones directly or indirectly affect health in several ways:
– It aggravates cases of drowning and other physical trauma.
– It also increases the risk of water and vector-borne infectious diseases.
– Enhances the psychological effects which are also related to emergencies.
– Disrupts health systems, facilities, and services. This would make it difficult for communities to access health care when they need it most.
– Damage to basic facilities including food and water supplies and safe shelter.
It is also said that the impact of a tropical cyclone also depends on the number of people living in the low-lying areas within the direct path of the storm, the built environment like the design of the building, and the adequate time for warning and evacuation. Flooding and seawater flow due to tropical cyclones increases the risk of drowning and water or vector-borne diseases.
Floodwaters can contain sewage and chemicals, hide sharp objects made of metals or glass, and power lines or dangerous snakes or reptiles can also fall into the stream, resulting in injury, electrocution, bites, and even diseases. can. According to the WHO, about 726 million people were affected by hurricanes worldwide between 1998-2017.
Tropical cyclone winds operate in the central region of atmospheric pressure. The wind is caused by a low-pressure core and Earth’s rotation, which additionally deflects the air path due to a phenomenon known as the Coriolis force. In the Northern Hemisphere, a tropical cyclone rotates counterclockwise or in a cyclonic direction, and the Southern Hemisphere it rotates in a clockwise or anticyclonic direction.
Tropical cyclones form when water vapor and heat are transferred from a warm ocean to evaporating air, primarily through evaporation from the ocean surface. As we know, hot humid air rises, expands, and cools, saturates quickly, and releases latent heat due to the condensation of water vapor. In this process, the air beneath the developing condyle becomes hot and humid. This creates a difference in temperature between the warm air and the cold atmosphere, which enriches the air and pushes it upwards.
If the ocean surface is too cold, the heat will not be enough and the rate of evaporation will be low to promote a tropical cyclone. Even the insufficient depth of the hot water layer will reduce the energy supply. This is because the tropical system is changing the underlying ocean. If the storm generates more disturbance, the ocean surface becomes cooler with rain from deep concentrated clouds and strong winds in the center. If this resulting mixture carried cold water from below the surface to the surface, the fuel supply for the tropical system would be reduced or stopped.
Rising air warms the core, removes latent heat and direct heat transfer from the ocean surface, and decreases atmospheric pressure at the center of the turbulence. As a result, the pressure decreases and causes an increase in surface air, which, in turn, increases steam and heat transfer, and also promotes the rise of air. The core heats up and the amplification of surface air reinforces or reinforces each other in a positive feedback mechanism.
A blizzard is distinguished by certain conditions:
Even more deadly is a seasonal phenomenon – heat waves. Heatwaves are different for different places; It is a period of hot weather that extends to at least 86 °F (30 °C) for at least three days in colder places, but longer in warmer places. In recent years, there has been an increase in the frequency and duration of heatwaves.
Introduction to WebGIS WebGIS, or Web-based Geographic Information System, is a platform that allows users…
Introduction Remote sensing and Geographic Information Systems (GIS) are pivotal tools for comprehending the dynamics…
Introduction: Remote sensing is the science of acquiring information about the Earth's surface without physical…
Introduction Europe is a continent with enormous diversity, both in terms of people and geography.…
Introduction: Disaster Management Disasters, whether natural or man-made, can have a devastating impact on communities,…
Introduction: Köppen Climate Classification The Köppen climate classification system is widely used due to its…
This website uses cookies.